20 research outputs found

    Thermocapillary Motion in an Emulsion

    Get PDF
    The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained

    Global solvability and blow up for the convective Cahn-Hilliard equations with concave potentials

    Get PDF
    We study initial boundary value problems for the convective Cahn-Hilliard equation \Dt u +\px^4u +u\px u+\px^2(|u|^pu)=0. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any p>0p>0. In contrast to that, we show that the presence of the convective term u\px u in the Cahn-Hilliard equation prevents blow up at least for 0<p<490<p<\frac49. We also show that the blowing up solutions still exist if pp is large enough (p2p\ge2). The related equations like Kolmogorov-Sivashinsky-Spiegel equation, sixth order convective Cahn-Hilliard equation, are also considered

    Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    Full text link
    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.Comment: Extended version, 24 pages, 1 figur

    The evolution operator of the Hartree-type equation with a quadratic potential

    Full text link
    Based on the ideology of the Maslov's complex germ theory, a method has been developed for finding an exact solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically concentrated functions. The nonlinear evolution operator has been obtained in explicit form in the class of semiclassically concentrated functions. Parametric families of symmetry operators have been found for the Hartree-type equation. With the help of symmetry operators, families of exact solutions of the equation have been constructed. Exact expressions are obtained for the quasi-energies and their respective states. The Aharonov-Anandan geometric phases are found in explicit form for the quasi-energy states.Comment: 23 pege

    Long-Wave Instability of Advective Flows in Inclined Layer with Solid Heat Conductive Boundaries

    Full text link
    We investigate the stability of the steady convective flow in a plane tilted layer with ideal thermal conductivity of solid boundaries in the presence of uniform longitudinal temperature gradient. Analytically found the stability boundary with respect to the long-wave perturbations, find the critical Grashof number for the most dangerous among them of even spiral perturbation.Comment: in Russian, 18 pages, 5 figures, submited to Appl. mechanics and physics, RAS Siberian brunch, Novosibirsk, Russia; Key words: advective flow, oblique layer, a longitudinal temperature gradient, long-wave instabilit

    Model of a viscous layer deformation by thermocapillary forces

    No full text

    Applications of group-theoretical methods in hydrodynamics

    No full text
    corecore